
October, 2002

Editor's View

Why a Framework?

Frameworks have a significant learning curve. Are they worth the
bother?

Recently, I've been studying one of the commercial frameworks for
Visual FoxPro. Because there's a third-party book about this

framework, as well as the Help file and some tutorials, I've been able
to get some quick results. Nonetheless, when working with this

product, I often feel like I'm programming with gloves on.

If all I want is "standard" stuff, the framework has tools to create it for

me. But whenever I want to do anything a little bit differently, I can't
just knock out the code as I usually would. Instead, I have to dig into

the book or the Help file or the examples or even the class libraries
that comprise the framework to figure out how this particular task is

accomplished through the framework, rather than working around it.

This exercise has led me to think about the learning process in our
business. I've spent many years learning VFP (and FoxPro and

FoxBase+ before it). More than a dozen years of experience with the
product means that I have large chunks of both syntax and semantics

at my fingertips. When I want to do something straightforward, I can
generally sit down at the keyboard and know exactly which commands

to use. Obviously, more complex tasks require more forethought, but
it's rare for me to encounter a problem in VFP for which I need to look

up more than syntax (and, of course, with IntelliSense in VFP 7, I
rarely even have to do that).

A few years, I became intrigued by Automation, and since then, have
spent a fair amount of time writing code to automate the Microsoft

Office products. While I've barely scratched the surface of the various
object models, I have reached the point, at least with Word, that I can

write a great deal of fundamental code without looking up more than
syntax(where, again, IntelliSense saves a lot of time). My last few

client projects have involved writing VBA code within the Office

products, and my experience automating them from VFP has made
this transition fairly easy (though I don't think I'll ever remember to

put THEN at the end of an IF statement).

My experience with both VFP and the Office products means that I've

been able to work with other object models comfortably. But
somehow, using this framework is much more difficult. I know that, if I

spend enough time with it, I'll get to the point of comfort, but the
learning curve is still steep.

Why is learning a framework fundamentally different from learning the
object model for an automation server? I think it's that a framework

requires you to rethink the whole structure of your application, and
even the process by which you create it.

When you automate a server, it's a side process in some sense. You're
still writing VFP (or VBA) code; you're just using it to talk to another

object and you can view the server's commands much like UDFs
you've written yourself.

Working inside a framework, though, means getting your head around
the way someone else has structured an application. It's much like

coming in to maintain an existing application. You have to get a feel

for the way the application is organized. At first, you only make tiny
little changes, to see what repercussions they have. The longer you

work with the application, the more confident you become in your
knowledge of its structure and operation.

If it's this hard to do, why bother learning a framework? That one's
easy. The framework contains code to handle all kinds of things I need

in pretty much every application I write, things like conflict resolution,
validation of data, and so forth. Never writing that code again seems

worth some initial struggles.

If you've already implemented your own framework for your

applications, and it does what you need, stick with it. If you haven't,
you'd be well-advised to look at the various frameworks available.

You'll find ads for most of them in FoxPro Advisor. Also, have a look at
the framework comparison chart and related topics at

http://fox.wikis.com/wc.dll?Wiki~FrameworkFeatureChart~VFP.

Still haven't upgraded?

By now, most of you know that VFP 8 (code-named Toledo) is in

development. (See my August column for a list of some of the features
coming in that version.) In fact, those attending DevCon will go home

with a copy of the beta. However, it's still going to be some time
before it hits the street.

http://fox.wikis.com/wc.dll?Wiki~FrameworkFeatureChart~VFP

In the meantime, if you haven't yet upgraded to VFP 7, what are you

waiting for? As I said in the July, 2001 issue, IntelliSense alone is
worth the price of the upgrade. In fact, I've heard of quite a few

people who still have to deliver applications in VFP 6, but are doing
their development in VFP 7, and then compiling in VFP 6. Besides

IntelliSense, VFP 7 includes increased support for XML, the ability to
create and consume Web Services, better tools for COM development,

improvements in interface creation, and much more. (For a detailed
list, check out the topic "What's New" in the online documentation at

http://msdn.microsoft.com/vfoxpro/technical/documentation.asp.")

In addition to the benefits to you as a developer, upgrading tells

Microsoft that you're still interested in VFP. Microsoft is, after all, a
business, and the larger the audience for any product, the more

resources it's likely to get.

So, don't wait for VFP 8. Upgrade to VFP 7 now, download the service

pack (follow the link from http://msdn.microsoft.com/vfoxpro/), and

find out what you're missing.

http://msdn.microsoft.com/vfoxpro/

